MATHCOUNTS $)$ (Innis

Warm-Up!

1. Using the F.O.I.L. method to multiply the binomials, we get $(x+2)(x-7)=x^{2}-7 x+2 x-14$. Once we combine like terms, our answer is $x^{2}-5 x-14$.
2. Since $x=3$ and $x=-4 / 3$ are the solutions to $k x^{2}-5 x-12=0$, we know $x-3=0$ or $3 x=$ $-4 \rightarrow 3 x+4=0$. The quadratic, then, can be written as the product of the two binomials $x-3$ and $3 x+4$ to get $(x-3)(3 x+4)=3 x^{2}+4 x-9 x-12=3 x^{2}-5 x-12$. We now can see that $k=3$.
3. $4^{10}=\left(2^{2}\right)^{10}=2^{20}$ and $8^{20}=\left(2^{3}\right)^{20}=2^{60}$, so $4^{10} \times 8^{20}=2^{20} \times 2^{60}=2^{20+60}=2^{80}$.
4. $b\left(b^{4} \times b^{3}\right)^{2}=b\left(b^{4+3}\right)^{2}=b\left(b^{7}\right)^{2}=b\left(b^{14}\right)=b^{15}=b^{3(5)}$, so $x=5$.

Follow-up Problems

5. Let's start by squaring each side of the given equation to get

$$
\begin{aligned}
\left(a+\frac{1}{a}\right)^{2} & =3^{2} \\
a^{2}+1+1+\frac{1}{a^{2}} & =9 \\
a^{2}+2+\frac{1}{a^{2}} & =9 \\
a^{2}+\frac{1}{a^{2}} & =7 .
\end{aligned}
$$

6. Since r is a solution to $x^{2}+11 x-19=0$, we know that $r^{2}+11 r-19=0$. We are looking for the value of $(r+5)(r+6)=r^{2}+11 r+30$. Taking $r^{2}+11 r-19=0$ and adding 49 to each side, we get $r^{2}+11 r+30=49$.
7. Using properties of exponents to rearrange the equation, we get

$$
\begin{aligned}
& \left(\frac{1}{4}\right)^{2 x+8}=(16)^{2 x+5} \\
& \frac{1}{(4)^{2 x+8}}=\left(4^{2}\right)^{2 x+5} \\
& 1=(4)^{4 x+10}(4)^{2 x+8} \\
& 1=(4)^{6 x+18}
\end{aligned}
$$

In order for the expression to work, $6 x+18$ must equal 0 . The value of x is $\mathbf{- 3}$.
8. First, we rewrite the equation $4^{x}=33 \cdot 2^{x-1}-8$ as $4^{x}-33 \cdot 2^{x-1}+8=0$. Since $4=$ 2^{2}, it follows that $4^{x}=\left(2^{2}\right)^{x}=\left(2^{x}\right)^{2}$. Also, since $2^{x-1}=2^{x} \cdot 2^{-1}=2^{x} \cdot(1 / 2)$, we can write $\left(2^{x}\right)^{2}-33 \cdot 2^{x} \cdot(1 / 2)+8=0 \rightarrow\left(2^{x}\right)^{2}-2^{x} \cdot(33 / 2)+8=0$. Now we can let $y=2^{x}$, and rewrite the equation as $y^{2}-(33 / 2) y+8=0$. To eliminate the fraction, we can multiply each side of the equation by 2 , to get $2 y^{2}-33 y+16=0$. Factoring the trinomial, we get $(2 y-1)(y-16)=0$. So, $2 y-1=0 \rightarrow 2 y=1 \rightarrow y=1 / 2$, and $y-16=0 \rightarrow y=16$ are solutions to this quadratic equation. To solve the original equation, we substitute $1 / 2$ and 16 for y in the equation $y=2^{x}$. We have $1 / 2=2^{x} \rightarrow 2^{-1}=2^{x} \rightarrow x=-1$, and $16=2^{x} \rightarrow 2^{4}=2^{x} \rightarrow x=4$.

